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In two-dimensional (2D) electron systems, the viscous flow is dominant when electron-electron collisions occur more frequently
than the impurity or phonon scattering. In this work, a quantum hydrodynamic model, considering viscosity, is proposed to
investigate the interaction of a charged particle moving above the two-dimensional viscous electron gas. ,e stopping power,
perturbed electron gas density, and the spatial distribution of the velocity vector field have been theoretically analyzed and
numerically calculated. ,e calculation results show that viscosity affects the spatial distribution and amplitude of the velocity
field. ,e stopping power, which is an essential quantity for describing the interactions of ions with the 2D electron gas, is
calculated, indicating that the incident particle will suffer less energy loss due to the weakening of the dynamic electron po-
larization and induced electric field in 2D electron gas with the viscosity. ,e values of the stopping power may be more accurate
after considering the effect of viscosity. Our results may open up new possibilities to control the interaction of ions with 2D
electron gas in the surface of metal or semiconductor heterostructure by variation of the viscosity.

1. Introduction

,e interaction of charged particles with matter is an es-
sential issue for a variety of physical systems, which has been
a subject of extensive research since the discovery of sub-
atomic particles [1]. Especially, the interests in surface
physics are at the focus of much current research on charged
particles interacting with two-dimensional (2D) electron
gases [2–5]. Most intriguing is perhaps energy loss, i.e., so-
called stopping power and the perturbed electron gas density
induced by the charged particle in the interaction process
[6–9]. Studying the stopping power of charged particle in
dense plasmas is crucial for applications in high energy
density physics [10, 11] and fundamental plasma physics
[7, 12, 13], which can help us to make an accurate under-
standing of ion beam transport. Additionally, in ion beam

analysis, where the stopping power of detected projectiles is
the common observable quantity, the specific stopping
power can obtain accurate depth perception [14]. Further-
more, the information given by the energy loss process in
plasma is crucial for characterization and surface modifi-
cation schemes [15–17] of the 2D system using projectiles in
the matter as a powerful tool.

Stopping power is a measure of the ability of a material to
slow down energetic particles that travel above the 2D sheet
and 3D bulk [18]. When a charged particle moves with
constant velocity near to a 2D sheet, the charged particle
loses its kinetic energy, and the electron gas density of the 2D
sheet is perturbed due to ionization and excitation of the
electrons [19]. ,e stopping power, i.e., the energy lost per
unit path length, is a substantial quantity used to predict and
understand the effects of particle radiation in the matter, ion
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ranges, and the energy deposited [20–22]. ,ere have been
many works, both theoretical and experimental, investi-
gating the stopping power [23–27]. Horing first investigated
the energy loss of the fast particle moving parallel to the two-
dimensional plasma sheet with a fixed distance by using the
random-phase approximation (RPA) theory [28]. Apart
from RPA theory, much work was carried out to study the
stopping power by using the dielectric and binary collision
theories [29–31], the quantum scattering theory [32], and
the local field correction (LFC) [33, 34]. In addition, the
density functional theory [35, 36], the first principles [18],
and the particle-in-cell (PIC) and molecular dynamics (MD)
[19, 37–38]were also adopted to study the interaction
process between the ions and plasma. Recently, some
progress has been made in the experimental study of the
stopping power. J. Ren and coworkers [11] have performed
an experiment to demonstrate the existence of collective
effects, for high-density beam, leading to enhanced stopping.
,eir results play an important role in the optimum design
of ion-driven inertial confinement fusion and fast ignition
schemes.,e importance of excited projectile states has been
reported by Y. Zhao et al. [13] in the stopping process,
providing significant support for the relevant research like
the atomic process in the solar wind.

So far, with technological development in the area of
miniaturized devices and the advances in nanofabrication
techniques, plasmonic materials containing fully degen-
erated electrons have recently received renewed attention
[39–42]. ,e quantum mechanical effects for the theoretical
description of quantum plasma must be taken into account.
For accurately understanding the dynamics of 2D quantum
electron gas, the use of the quantum hydrodynamic model
(QHD) is required, which was developed by solving the
nonlinear Schrödinger–Poisson or the Wigner–Poisson
kinetic models [43, 44]. Also, based on this model, both the
quantum statistical and quantum diffraction effects have
been proved to play an essential role in studying the in-
teractions of charged particles with the quantum electron gas
[45–48].

Interactions between particles in quantum many-body
systems can bring about the collective behavior described by
hydrodynamics. Some new features in the two-dimensional
electron gas of the hydrodynamic regime will be produced
on the condition that the typical length scale of electron-
electron scattering (lee) is shorter than those of electron-
disorder and electron-phonon scatterings (l), i.e., lee≪ l.
Under these conditions, the electrons show the trend of
collective motion, and the electron transport is dominated
by the viscosity [49]. In other words, in materials in which
electrons strongly interact with each other or with phonons,
electron transport is thought to be similar to viscous flows
[50]. Furthermore, when electron-electron collisions occur
more frequently than the impurity or phonon scattering, the
viscous current is expected to be dominant [51]. For ex-
ample, in graphene, which hosts a unique electron system,
the electron-phonon scattering is extremely weak, but
electron-electron collisions are sufficiently frequent to
provide the local equilibrium above the temperature of
liquid nitrogen. In this instance, the electrons can behave as

a viscous flow and exhibit hydrodynamic phenomena
similar to classical flows [52].

Recently, experiments on WP2 [50, 51] and GaAs have
many features demonstrating the viscous flow of electrons.
,e shear forces caused by the viscosity at the channel walls
result in a nonuniform velocity profile, so that the electrical
resistivity becomes a function of the channel width, sug-
gesting a viscosity-induced dependence of the electrical
resistivity on the sample width [50]. Moreover, compared
with the Ohmic flow of the particles in a mesoscopic two-
dimensional electron gas in a GaAs quantum well in the
hydrodynamic regime [51], the viscosity can cause backflow
of the current and negative nonlocal voltage. In addition, the
experimental results of Gusev G et al. confirm the theo-
retically predicted significance of viscous flow in mesoscopic
two-dimensional electron gas [53]. ,en, they studied ex-
perimentally an electronic analog of the Stokes flow around a
disc immersed in a two-dimensional viscous liquid of the
GaAs quantum wells. ,e results confirm theoretical pre-
dictions and open up the possibility of controlling the
current in the microstructure by changing the viscosity [54].
Moreover, a series of updated theoretical approaches have
been published [55–58] considering a vicious system.
Meanwhile, the viscous quantum hydrodynamic model has
been used for many studies, such as the quantum semi-
conductor devices [59–61], nonlinear plasma oscillations
[62] and the Jeans self-gravitational instability for dense
quantum viscous plasma [63].

However, to the best of our knowledge, viscosity in the
two-dimensional quantum electron gas (2DQEG) effect has
not been considered in beam-2DQEG interactions. ,us, an
interesting question arises: How is the strength of the
stopping power changed in the viscous 2D quantum electron
gases? In this work, the main aim is to study the interaction
between charged particles and 2D quantum electron gases in
viscosity. We propose a revised quantum hydrodynamic
model for a viscous two-dimensional quantum electron
based on the model obtained in reference [64].,e outline of
the study is as follows. In Section 2, we introduce our
quantum hydrodynamic model and then derive the ana-
lytical expressions of the stopping power, the perturbed
density, and the velocity vector field of perturbed electron
gas based on revised QHD. In Section 3, numerical results of
the perturbed density, spatial distribution of the velocity
field, and the stopping power are discussed in different
conditions. Moreover, we present the viscosity impacts on
these quantities. Finally, a summary is given in Section 4.
Gauss units will be adopted throughout the study.

2. Quantum Hydrodynamic Model

2.1. 2e Viscosity Coefficient. In the hydrodynamic regime,
electronic dynamics is dominated by viscosity, rather than
impurity scatting [56]. ,e electron flow in which numerous
target nuclei are suspended (forming a suspension-like) may
be regarded as a homogeneous medium. Such a medium has
an effective viscosity η [65]. In the present work, we neglect
the compressibility, the thermal conductivity effects, and
magnetic and temperature effects. Viscosity is solely
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characterized by momentum relaxation in fluid. It should be
noted that in general, the electron viscosity is not necessarily
related to electron-electron collisions. Any process pro-
viding the relaxation of the second moment of the electron
distribution function leads to viscosity. ,us, the viscosity
coefficient η is proportional to the second-order relaxation
time τ2 [55].

η �
1
4
v
2
Fτ2,

1
τ2(T)

�
1

τ2,ee(T)
+

1
τ2,0

,

(1)

where vF is the Fermi velocity. Additionally, 1/τ2,ee(T) is the
interelectron relaxation rate, while 1/τ2,0, being the “resid-
ual” relaxation rate of the shear stress at T⟶ 0 owing to
scattering of electrons on disorder, is not related to the
electron-electron collisions [55, 66]. ,e temperature effect
is not considered here, i.e., τ2 ≈ τ2,0. Furthermore, the
character of the viscous flow strongly depends on the ge-
ometry and probe configurations of the sample in general.
For instance, the velocity field in a curved pipe flow becomes
more nonuniform than in a straight pipe, which may en-
hance the viscosity effect [53]. In principle, a range of vis-
cosity values is to be expected in different electron flows [67].
For a typical system of the viscous flow, the high-quality
GaAs quantum wells with the electron density
n≃9.1 × 1011cm− 2, 2.9 × 1011cm− 2, or 6.0 × 1011cm− 2, the
following fitting parameters, τ2,0 � 0.8 × 10− 11s, 1.1× 10− 11s,
or 0.69 × 10− 11s, are used in references [51, 53, 55]. ,e
viscosity coefficient η values of two well-known 2D electron
flows, GaAs quantum wells at 1.4 K of two different con-
figurations and graphene, are 1200cm2s− 1, 3000cm2s− 1, and
1000cm2s− 1 [51–53], respectively, an order of magnitude
higher than that of honey. For comparison, liquid honey has
typical viscosities of 20–50cm2s− 1 [52]. ,e τ2 is related to
the temperature and density of the material.
rs � (2πn0a

2
B)− 1/2 is also the function of density dependent

on the material character. ,erefore, when the temperature
takes a certain value, the value of τ2 for the corresponding
range can be obtained by giving the value of the density
function rs, as reported in [66].

Consequently, as for rs � 2, we can set the values of τ2,0
in the range between τ2 ≈ τ2,0 � 1.1 × 10− 16s and
1.1 × 10− 13s at T⟶ 0, since the characteristic time (inverse
of the electron plasma frequency 1/ωp � (2πn0e

2/meaB)− 1/2)
is about 10− 16 − 10− 13 s. According to reference [66], the
shear stress relaxation rate 1/τ2 as the function of temper-
ature for the GaAs quantum well was presented for the
density n � 1.6 × 1011cm− 2, which increases from the order
of 1011s− 1 to 1012s− 1 with increasing temperature T.
,erefore, as for τ2, the order of 10− 13s–10− 16s can be related
with the graphene, GaN, and thin metal film for corre-
sponding carrier concentrations n of the order of 1012cm− 2,
1013cm− 2, and 1012–1016cm− 2 [47, 52, 68], the carrier
concentrations of which can be changed by doping and other
methods.

As a result, the corresponding viscosity η in the case
assumed by this work can take values of 0.33cm2s− 1,

3.3cm2s− 1, 33cm2s− 1, and 330cm2s− 1. As follows, the in-
fluence of the viscous effect (1) is considered for themodified
expressions of the perturbed density, the stopping power,
and the velocity vector field of the perturbed electron gas.

2.2. Derivation of the FluidModel. We consider an idealized
2DEG with an equilibrium density, n0 � ni0 � ne0, which is
composed of free electrons and motionless ions. ,e region
z> 0 is the vacuum. A particle of charge Z1e moves with
constant velocity v parallel to 2DEG along the x axis with
density ρext � Z1eδ(r − vt)δ(z − z0), where v � vex,
r � r(x, y), and z0 is the distance from the plane, described
in a Cartesian coordinate systemwith R � x, y, z , as shown
in Figure 1. ,erefore, the homogeneous 2DEG will be
perturbed by the charged particle and can be regarded as a
charged viscous fluid with velocity field ue(r, t) and the
electron gas density (per unit area) ne(r, t).

By employing the linearized quantum hydrodynamic
model of the incompressible viscous fluid, the electronic
excitation on the 2DEG surface can be described by the
continuity equation as

zne

zt
+ ∇‖ · neue(  � 0, (2)

the momentum-balance equation as

me

zue

zt
+ ue · ∇‖ ue  � e∇‖Φ|z�0 − ∇‖we +

Z
2

2me

∇‖

1
��
ne

√ ∇2‖
��
ne

√
 

− cmeue + meηΔ‖ue,

(3)

and Poisson’s equation as

∇2Φ � 4πe neδ(z) − n0δ(z) − Z1δ(r − vt)δ z − z0(  , (4)

where me is the electron mass, e is the elementary charge,
and Z is the Planck constant divided by 2π. It is worth noting
that, in (2) and (3), ∇‖ � (z/zx)ex + (z/zy)ey, which is used
to describe the quantum electron gas surface, is different
from ∇ � (z/zx)ex + (z/zy)ey + (z/zz)ez unrestricted in
(4) and Δ‖ � ∇2‖ � ((z2/zx2) + (z2/zy2)). In addition, the

z

Incident particles:Z1e

Viscous electron flow

ue(r,t)

2DEG

z0

xoy

x

v

Figure 1: Schematic illustration of the interaction system: a particle
of charge Z1e moving with v above 2DEG described in Cartesian
coordinate, R � x, y, z , along the x axis at a distance z0 above the
2DEG plane.
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viscosity is taken into account through the coefficient of
viscosity η. Φ is the total potential which consisted of the
external potentialΦ0 of the moving charged particle and the
induced potential,Φind, generated by the perturbation of the
electron gas density on the 2DEG surface. In the right-hand
side of (3), the first term is the force on electrons of the
electron gas surface given by the tangential component of
the electric field. ,e second and third terms are regarded as
the quantum effects due to the internal interactions in the
electron species and the quantum pressure, where
we � πZ2ne/me, being the Fermi energy of 2DEG.,e fourth
term is the frictional force on electrons, owing to the positive
charge background, with c being the frictional coefficient,
while the last term, meηΔ‖ue, is the viscous force result from
the electron gas at different speeds, where η is the viscosity
coefficient.

,ere is a weak perturbation in 2DEG by the moving
charged particles. Hence, we can linearize the above equa-
tions by assuming the density, velocity field, and the po-
tential written as ne(r, t) � n0 + ne1(r, t) (|ne1(r, t)|≪ n0),
ue(r, t) � ue1(r, t), Φ(r, z, t) � Φ1(r, z, t), and Φ(r, 0, t) �

Φ1(r, 0, t), where ne1(r, t), ue1(r, t) and Φ1(r, z, t) represent
the first-order perturbed values of the density, velocity, and
potential. ,e linearized equations of the electronic exci-
tation on the electron gas surface are obtained as follows:

zne1

zt
+ n0∇‖ · ue1 � 0, (5)

me

zue1

zt
� e∇‖Φ1|z�0 −

πZ
2

me

∇‖ne1

+
Z
2

4men0
∇‖ ∇

2
‖ne1 

− cmeue1 + meηΔ‖ue1,

(6)

∇2Φ1 � 4πe ne1δ(z) − Z1δ(r − vt)δ z − z0(  .

(7)

We adopt the time-space Fourier transform:

F(R, t) � BdQdω
(2π)

4 f(Q,ω)e
i(Q·R− ωt)

, (8)

where F(R, t) stands for any of the above-listed perturbed
quantities, and Q � kx, ky, kz  is the wave vector. By using
the Fourier transform in (5), (6), and (7), we can readily
obtain the perturbed ne1(r, t), the induced potential
Φind (r, z, t), and the velocity field ue1(r, t) of perturbed
electron gas:

ne1(r, t) � − n0
Z1e

2

2πme

 dkke− kz0D
− 1

(k,ω)e
ik·(r− vt)

,

(9)

Φind (r, z, t) �
Z1e

3
n0

me

 dke
− k z+z0( )D

− 1
(k,ω)e

ik·(r− vt)
,

(10)

ue1x(r, t) � −
Z1e

2

2πme

 dk ·
ω
k

·
kx

D(k, w)
· e

− kz0 · e
ik(r− vt)

,

(11a)

ue1y(r, t) � −
Z1e

2

2πme

 dk ·
ω
k

·
ky

D(k, w)
· e

− kz0 · e
ik(r− vt)

,

(11b)

where D(k,ω) � ((ωω − (kvF)2(1 + k2/2k2
F))/(2−

ω2
p(kaB)+ iηk2w)), with ω � ω + ic, Bohr radius

aB � Z2/mee
2, Fermi velocity vF � ZkF/me, Fermi wave

number kF �
����
2πn0


, Fermi wave length λf � 1/kF, electron

plasma frequency ωp � (2πn0e
2/meaB)1/2, and the 2D wave

vector k � kx, ky . In addition, the direction of the pro-
jectile velocity v is along with the x axis, for which ω � k · v,
so that we can obtain ω � kxv.

For convenience, we introduce the dimensionless vari-
ables: u � ω/ωp, qy � ky/kF, q � k/kF, v � v/vB, l � l/λf,
x � ((x − vt)/λf), c � c/ωp, and η � η/wp/k2F, where l

stands for any quantity of length. By using the dimensionless
variables above, (9), (10), (11a) and (11b) can be reduced to

ne1(r, t)

n0
� An 

+∞

− ∞
dqy 

+∞

− ∞
du ·

q · e
− q


z0

D0



2 cos yqy 

× Re D0( cos
xu

v
  + Im D0( sin

xu

v
  ,

(12)

Φin d(r, z, t)

Φn

� Aϕ 
+∞

− ∞
dqy 

+∞

− ∞
du · e

− q


z0+tz)

D0



2
cos yqy × Re D0( cos

xu

v
 +Im D0( sin

xu

v
  ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (13)
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ue1x(r, t)

vB

� Aux 
+∞

− ∞
dqy 

+∞

− ∞
du ·

u
2

· e
− qz

q · D0



2 cos yqy 

× Re D0( cos
xu

v
  + Im D0( sin

xu

v
  ,

(14a)

ue1y(r, t)

vB

� Auy 
+∞

− ∞
dqy 

+∞

− ∞
du ·

u · qy · e
− qz

q · D0



2 sin yqy 

× Re D0( sin
xu

v
  − Im D0( cos

xu

v
  ,

(14b)

where An � (− Z1)/2πrsv, AΦ � Z1/2πvr2s , Φn � e/aB,
Aux � ((− Z1)/2πv2rs), and Auy � Z1/2πvrs, and

D0(q, u) � u(u + ic) − q
2 1 + q

2/2  

2r
2
s

⎛⎝ ⎞⎠ −
q

rs

+ iuq2η,

(15)

is the dimensionless D(k,ω). Besides, rs � (2πn0a
2
B)− 1/2 is

the so-called Wigner radius as the function of density de-
pendent on the material.

,e stopping power S(v) � − (dE/dx) originates from
the induced potential:

S(v) � eZ1
zΦind

zx
|
z�z0
r�vt . (16)

,us, we can obtain the expression of the dimensionless
stopping power:

S(v)

S0
� AsBdudqye

− 2qz0u
Im D0( 

Do



2 , (17)

where As � Z2
1/2πvr3s , S0 � (e/aB)2. ,e form of dimen-

sionless equations (12), (13), (14a), (14b), and (17) obtained
above are similar to reference [64], but the internal forms are
different, as reflected in the fact that the imaginary part of
D0(q, u) takes into account the viscous effect uq2η.
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Figure 2: ,e perturbed electron gas density (normalized by n0) with and without viscosity for different relaxation times τ2 (i.e., different
viscosity coefficients η � (1/4)v2Fτ2 and the dimensionless variables η � η/wp/k2F): (a) τ2 � 1.1 × 10− 16, (b) τ2 � 1.1 × 10− 15, (c)
τ2 � 1.1 × 10− 14, and (d) τ2 � 1.1 × 10− 13 with rs � 2 and v � 2vB.
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In the next section, the results of the perturbed electrons
gas density, the velocity vector field of the perturbed electron
gas, and the stopping power are obtained numerically
according to (12), (14a), (14b), and (17), respectively, where
the MATLAB solver function (integral2 function) is used to
solve the double integral. Referring to [64] for parameter
selection, we take the charge number of the incident particle
is a proton Z1 � 1, the friction coefficient c � 0.02ωp, the
height z0 � 3.0λf, and rs � 2 kept fixed throughout the
study. ,e QHDmethod is suitable to calculate the stopping
power for higher particle velocities greater than the Bohr
velocity, as discussed in our previous work [69].,us, for the
velocity of the incident particle, we start from v � vB.

3. Numerical Results

3.1. 2e Perturbed Electron Density. We have solved (12)
numerically for the values of the plasma configuration

parameters v � 2vB and rs � 2 in the case of with and
without viscosity.,e results are shown in Figure 2, showing
the distribution of perturbed electron gas density ne1
(normalized by n0). ,en, how the perturbed density of the
electron gas is impacted by viscosity will be discussed.
Equation (1) shows that the viscosity coefficient η is a
function of the relaxation time τ2, linearly increasing as τ2
increases. To examine the effects of the viscosity on the
perturbation of the electron gas, we plot Figure 2 for four
relaxation time values (τ2 � 1.1 × 10− 16, 1.1 × 10− 15,
1.1 × 10− 14, and 1.1 × 10− 13) with rs � 2 and v � 2vB. Note
that, as τ2 increases (namely, η increases), the oscillation
amplitudes of the perturbed density decrease, and then,
finally, the peak is suppressed and disappears gradually. We
can also see in Figure 2 that the perturbed region becomes
smaller when τ2 increases. ,is is because when the incident
particles move above 2DEG, part energy of the incident
particles is dissipated by the viscous effect, leading to a
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Figure 3: Comparisons of the perturbed electron gas density (normalized by n0) in the different moving speeds of the incident particles in
the case of considering different relaxation times τ2 (i.e., different viscosity coefficients η � (1/4)v2Fτ2 and the dimensionless variables
η � η/wp/k2F): (a) τ2 � 1.1 × 10− 16, (b) τ2 � 1.1 × 10− 15, and (c) τ2 � 1.1 × 10− 14 with rs � 2.
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decrease in the energy that makes the electron gas move-
ment. It can be clearly seen that electron density pertur-
bation is significantly suppressed at high viscosity.

,e comparison of the perturbed electron gas density for
the different moving speeds (v � vB, v � 1.5vB, v � 2vB,
v � 3vB, and v � 4vB) is shown in Figure 3 with three re-
laxation time values (τ2 � 1.1 × 10− 16, 1.1 × 10− 15, and
1.1 × 10− 14). In the case of low viscosity shown in
Figure 3(a), one can find that the curves of the perturbed
electron gas density demonstrate an obvious difference for
spatial change, which indicates that the projectile speed has a
strong influence on the wake-field.,e number of wake-field
oscillations excited behind the incident particles decreases
with increasing velocity. ,e maximum values decrease in
magnitude with the increasing v, and its position shifts
toward lower values. ,e trend of this change shows good
agreement with the conclusion in reference [45], which also
showed the decrease in themaximum values and the number
of wake-field oscillations. Figures 3(b) and 3(c) show the

curves of the perturbed electron gas density for different
viscosities with τ2 � 1.1 × 10− 15 and 1.1 × 10− 14, showing
similar change tendencies with those in Figure 3(a) for fixed
τ2. However, as shown in Figures 3(b) and 3(c), an inter-
esting phenomenon appears when the incident particle
moves along x direction with a certain speed in different
values of the viscosity, in which the strength of the perturbed
electron gas density decreases and the perturbed region
become smaller as viscosity increases, which is in agreement
with that shown in Figure 2. At a fixed incident particle
velocity, the curve exhibits multiple wake-field oscillations
behind the particle with low viscosity, while the oscillations
vanish with high viscosity.

3.2. 2e Spatial Distribution of the Velocity Vector Field.
Figures 4 and 5 show the spatial distribution of the velocity
vector field of perturbed electron gas for different incident
particle speeds to further understand the influence of
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Figure 4: ,e spatial distribution and magnitude of the velocity vector field (normalized by vB): (a) the spatial distribution of the
velocity vector field without viscosity, (b) the spatial distribution of the velocity vector field with viscosity, (c) the magnitude of the
velocity vector field without viscosity, and (d) the magnitude of the velocity vector field with viscosity, where v � 2vB, rs � 2, and
τ2 � 1.1 × 10− 15.
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viscosity. We first show in Figures 4(a) and 4(b) the spatial
distribution of the velocity vector field with v � 2vB, rs � 2,
and τ2 � 1.1 × 10− 15. One can see from Figures 4(a) and 4(b)
that the wake-field is almost axially symmetric about the y

axis, compared with those in the case of considering the
viscosity shown in Figure 4(b), in which the V-shaped cones
structures lag slightly behind the incident particles, along
with fewer oscillatory lateral wakes. Besides, we also observe
that these structures are composed of multiple cones, which
become fewer in consideration of the viscosity. However, the
magnitude of the velocity vector field |ue1| can be also de-
termined by the viscosity, which can be inferred from (14a)
and (14b) in the imaginary part of D0. ,us, the magnitude
of the velocity field of the electrons |ue1| in the wake-field
region is shown in Figures 4(c) and 4(d). ,e main features
observed in Figures 4(a) and 4(b) are shown in Figures 4(c)
and 4(d). Moreover, the maximum value of |ue1| is sup-
pressed when the viscosity is taken into account, indicating
the viscosity makes the electron gas more difficult to be
disturbed. ,ese characteristics closely resemble the spatial
distribution of perturbed electron gas density ne1.

As demonstrated above, viscosity affects the spatial
distribution and affects the maximum value of the velocity
vector field. ,us, such a viscosity effect on the velocity
vector of the perturbed electron gas ue1 is shown in
Figures 5(a)–5(c) with viscosity for different relaxation times
τ2 � 1.1 × 10− 16, τ2 � 1.1 × 10− 15, and τ2 � 1.1 × 10− 14 with
v � 3vB. From Figure 5(a), we can see that in the low-vis-
cosity case (τ2 � 1.1 × 10− 16), the characteristics closely
resemble the case of without considering the viscosity in
Figure 4(a). ,e similar cone structures of the velocity field
and invariably symmetrical spatial distributions concerning
the y axis are still reproduced in the wake-field regions,
showing the evident dynamic polarization of the perturbed
electron gas. ,e same pattern has also been found in ref-
erence [19], in which the dynamic polarization of perturbed
electrons becomes obvious with increasing magnetic field.
However, as shown in Figures 5(b) and 5(c) with the in-
creasing viscosity, the opening cone angles of the V-shaped
wake-field decrease, and the oscillation tails disappear
gradually, showing the wakening of the dynamic polariza-
tion, which is completely different from the velocity
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Figure 5: ,e spatial distribution of the velocity vector field of perturbed electron gas ue1 (normalized by vB) in the case of viscosity for
different relaxation times (i.e., different viscosity coefficients η � (1/4)v2Fτ2 and the dimensionless variables η � η/wp/k2

F): τ2 � (a)
1.1 × 10− 16, (b) 1.1 × 10− 15, and (c) 1.1 × 10− 14, with v � 3vB.
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distribution under the influence of magnetic field that the
dynamic polarization is enhanced as the magnetic field
increases [19]. It can be concluded that the movement of the
perturbed electron gas is increasingly restricted under the
influence of viscosity. In this case, the electrons cannot fully
respond to the disturbance from the incident particles,
giving rise to the reduction in the wake region.

3.3. Stopping Power. ,e viscosity significantly impacts the
density and velocity vector field of the perturbed electron
gas. As a result, such an influence can also be seen in the
stopping power, as shown in Figure 6, showing how the
electronic stopping character is impacted by viscosity. ,e
influence of viscosity is reflected clearly in Figure 6 where the
stopping power is plotted as a function of velocity for the
same condition shown in Figure 2. ,e main features ob-
served in the perturbed density are reproduced in the
stopping power. With the increasing τ2 values shown in
Figure 6, at the high-velocity region, the two curves for the
stopping power show agreement with each other, while at
the low-velocity region, the peak values of the stopping

power get weaker, showing less energy loss from projectiles.
Besides, note that the peak position of the stopping power
shifts mainly to the lower-velocity region with the viscosity.
Finally, the peak is limited to become a broad plateau, in-
dicating that the energy loss of the particle is hardly
influenced by the viscosity when the viscosity reaches a
considerable value. ,e above results are entirely different
from those in reference [19], in which the significant en-
hancement of the stopping power has been observed with
the increasing magnetic field. ,erefore, one can expect that
the differences of the results between the two situations of
with and without viscosity are due to the action of the
viscosity on the perturbed electron gas density and velocity
vector field in the plane at their distribution and magnitude,
which can be seen in parts of the perturbed electron density
and the spatial distribution of the velocity vector field.

4. Summary

,e purpose of this study was first to derive a self-consistent
quantum hydrodynamic model that incorporates quantum
and viscosity effects. ,en, two-dimensional simulations are
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Figure 6: ,e stopping power S (normalized by S0 � (e/aB)2) versus the moving speed with and without viscosity for different relaxation
times τ2 (i.e., different viscosity coefficients η and the dimensionless variables η � η/wp/k2F): (a) τ2 � 1.1 × 10− 16, (b) τ2 � 1.1 × 10− 15, (c)
τ2 � 1.1 × 10− 14, and (d) τ2 � 1.1 × 10− 13 with rs � 2.
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performed to investigate the interaction of the moving
charged particle with 2DQEG, taking into account the
viscosity based on the QHD model. Special attention is paid
to the influences of the viscosity during interaction. ,e
analytical expressions of the perturbed electron density, the
velocity vector field in 2DQEG, and the stopping power have
been derived based on the assumption of the linear dis-
turbance. Results show that the viscosity effect suppresses
the perturbation of the electron gas density and velocity
vector field in the two-dimensional plane. As for considering
the viscosity effect, our simulation results show that the
oscillatory behaviors of the perturbed density and velocity
vector field turn up in the case of small viscosity and then
disappear gradually with the increasing of the viscosity.
Besides, the magnitude of the wake-field decreases, and the
perturbed regions caused by the moving particles get smaller
due to the restriction on electron motion as the viscosity
increases.,e same trend is reproduced as the velocity of the
incident particle increases. Furthermore, the perturbed
density may change locally without changing in the sur-
roundings due to the action of the viscous term [70]. ,e
results indicate that the wake-field oscillation amplitude will
decrease, and the incident particle will suffer less energy loss
as the viscosity has been taken into account. Furthermore, in
the stopping power calculation, the charged particle will
suffer less energy loss.

In conclusion, viscosity not only affects the spatial
distribution but also affects the magnitude. ,is is because
the existence of the viscous term makes the electron gas less
likely to be disturbed, resulting in the weakening of the
electron polarization. In other words, due to the presence of
a viscous effect, the average flow velocity of the electron gas
is reduced, and the viscous flows may show a peculiar be-
havior that self-organizes into streams with different speeds.
As a result, the distribution and magnitude of the disturbing
electron gas are changed, giving rise to the reduction in the
stopping power.

In summary, the model proposed in this study can be
used in any system with two-dimensional electron gas such
as the two-dimensional monovalent layered metal PdCoO2
[67], graphene [52], and the GaAs quantum wells [55]. What
is more, viscosity term is a key quantity in the hydrodynamic
regime, which could change the interaction mechanism of
ions and a quantum 2DEG, such a 2DEG can be performed
in various modern developments in the field of semicon-
ductor heterostructures [71], nanoscale objects such as
nanowires, quantum dot, the metal surface at the nanoscale
[47], and graphene [72]. ,e viscosity in 2D electron fluid
can offer a promising opportunity to use various scanning
probes to estimate the stopping power for surface detecting.
Likewise, we can also estimate viscosity by measuring the
stopping power. Furthermore, hydrodynamic characteris-
tics, i.e., the viscosity of the 2D electron fluid, can be par-
ticularly enhanced by tuning the configuration or doping of
the samples to change the electron gas density to achieve the
purpose of stopping power modulation. Furthermore, the
viscous effects can promote high mobility transmission at
elevated temperatures, which is a potentially useful behavior
for designing graphene-based devices [73]. Consequently,

for our future study, we would like to extend the present
work on the presence of external magnetic fields under high
temperatures.
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